Performance of Robust Wild Bootstrap Estimation of Linear Model in the Presence of Outliers and Heteroscedasticity Errors
نویسندگان
چکیده
Bootstrap techniques are widely used today in many other fields such as economics, Business Administration, Physics, Engineering, Chemistry, Meteorological, Biological Sciences and Medicine. This paper is concerned with the estimation of linear regression model parameters in the presence of heteroscedasticity using wild bootstrap approaches of Wu and Liu. The empirical evidence has shown that these techniques are effective in the presence of heteroscedasticity. However, when there are outliers in the data, this method is no longer effective. To overcome this situation, this paper proposed robust wild bootstrap estimation methods where heteroscedasticity and outliers occur simultaneously. The proposed method is based on the Tukey-redesceding M-estimator which incorporate the LTS and LMS estimator, robust scale and location, and the wild bootstrap sampling procedures of Liu and Wu. Its performance is compared with other existing robust wild bootstrap estimator of MM-estimator using real data and simulation study. The results obtained from this study disclosed that the proposed methods offer a substantial improvement over the existing techniques and proved to be a good alternative estimator. Copyright © 2015 Penerbit Akademia Baru All rights reserved.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملTesting the Exactitude of Estimation Methods in the Presence of Outliers: An accounting for Robust Kriging
Estimation of gold reserves and resources has been of interest to mining engineers and geologists for ages. The existence of outlier values shows the economic part of the deposits subject to the fact that don’t depend on the human or technical errors. The presence of these high values causes a pseudo dramatically increment in variance estimation of economical blocks when applying conventional m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015